Fig. 1 Distribution of Overlap Index (n=192)

Overlap Index

Number of cells

simple (n=31) duplex (n=158)
Fig. 2 Subunits AR width vs. OI (n=192)
Relative modulation (RM) is defined as:

\[RM_1 = \frac{AC_1}{DC - DC_{spont}} \]
Complexity index is defined as ratio of mean subunit AR width to grating bar width:

\[
CI = \frac{0.5(\text{INC} + \text{DEC})}{\text{grating half period}}
\]

mean AR 30'
grating 1 cpd
CI 1
Fig. 5 Simple cell (10982). OI = -0.17, AR = 14', BD 0 spk/s

Drifting Sine, Window 62', SF 2 cpd, TF 5 Hz

Counterphase Sine, Window 62', SF 2 cpd, TF 2 Hz

Harmonic analysis

RM = 1.52
Fig. 6 Duplex cell (22883). OI = 0.95, AR = 51', BD 7 spk/s

Drifting Sine, Window 52', SF 1 cpd, TF 5 Hz Counterphase Sine, TF 2 Hz, Window and SF varied

Harmonic analysis

RM = 0.95

AC(1)/DC: 0.9501 -BD=0.007
DC: 0.03339 F1 (5): 0.032 -19.7

AC(1)/DC: 0.1228 -BD=0.007
DC: 0.01887 F1 (2): 0.0023 14.5
Fig. 7 Duplex cell (28682). OI = 0.94, AR = 17', BD 2 spk/s

Drifting Sine, Window 12', SF 4 cpd, TF 5 Hz

Drifting Sine, Window 12', SF 0.5 cpd, TF 5 Hz

Harmonic analysis

$RM = 1.15$

Harmonic analysis

AC(1)/DC: 1.15 -BD=0.002 DC: 0.04961 F1 (5): 0.054 -62.4

AC(1)/DC: 0.50 -BD=0.002 DC: 0.06106 F1 (5): 0.030 118
Fig. 8 Duplex cell (15884). OI = 0.97, AR = 34', BD 0 spk/s

Drifting Sine, Window 23', TF 5 Hz, various SF - spectra of responses

![Graphs showing frequency spectra for different spatial frequencies.](image)

Drifting Sine, SF 0.5 cpd, TF 5 Hz, various Window sizes

![Graphs showing frequency spectra for different window sizes.](image)